Visual Studio Code Extension Examples

Working with Python in Visual Studio Code, using the Microsoft Python extension, is simple, fun, and productive. The extension makes VS Code an excellent Python editor, and works on any operating system with a variety of Python interpreters. It leverages all of VS Code's power to provide auto complete and IntelliSense, linting, debugging, and unit testing, along with the ability to easily switch between Python environments, including virtual and conda environments.

Increase the power of Visual Studio Code through Extensions. The features that Visual Studio Code includes out-of-the-box are just the start. VS Code extensions let you add languages, debuggers, and tools to your installation to support your development workflow.

This article provides only an overview of the different capabilities of the Python extension for VS Code. For a walkthrough of editing, running, and debugging code, use the button below.

Visual studio code language extension example

Install Python and the Python extension

The tutorial guides you through installing Python and using the extension. You must install a Python interpreter yourself separately from the extension. For a quick install, use Python 3.7 from python.org and install the extension from the VS Code Marketplace.

Once you have a version of Python installed, activate it using the Python: Select Interpreter command. If VS Code doesn't automatically locate the interpreter you're looking for, refer to Environments - Manually specify an interpreter.

  1. VS Code Extension Samples This repository contains sample code illustrating the VS Code extension API. Each sample is a self-contained extension that explains one topic in VS Code API or VS Code's Contribution Points. You can read, play with or adapt from these samples to create your own extensions. You can expect from each sample.
  2. For examples of extensions, check out the Visual Studio Marketplace. Many extensions are open sourced, and the Marketplace includes links to their GitHub repo. Which Visual Studio features can I extend? In theory, you can extend just about any part of Visual Studio: menus, toolbars, commands, windows, solutions, projects, editors, and so on.

You can configure the Python extension through settings. See the Settings reference.

Insiders program

Best visual studio code extension

The Insiders program allows you to try out and automatically install new versions of the Python extension prior to release, including new features and fixes.

If you'd like to opt into the program, you can either open the Command Palette (⇧⌘P (Windows, Linux Ctrl+Shift+P)) and select Python: Switch to Insiders Daily/Weekly Channel or else you can open settings (⌘, (Windows, Linux Ctrl+,)) and look for Python: Insiders Channel to set the channel to “daily” or “weekly”.

Run Python code

To experience Python, create a file (using the File Explorer) named hello.py and paste in the following code (assuming Python 3):

The Python extension then provides shortcuts to run Python code in the currently selected interpreter (Python: Select Interpreter in the Command Palette):

Best Visual Studio Code Extension

  • In the text editor: right-click anywhere in the editor and select Run Python File in Terminal. If invoked on a selection, only that selection is run.
  • In Explorer: right-click a Python file and select Run Python File in Terminal.

You can also use the Terminal: Create New Integrated Terminal command to create a terminal in which VS Code automatically activates the currently selected interpreter. See Environments below. The Python: Start REPL activates a terminal with the currently selected interpreter and then runs the Python REPL.

For a more specific walkthrough on running code, see the tutorial.

Autocomplete and IntelliSense

The Python extension supports code completion and IntelliSense using the currently selected interpreter. IntelliSense is a general term for a number of features, including intelligent code completion (in-context method and variable suggestions) across all your files and for built-in and third-party modules.

IntelliSense quickly shows methods, class members, and documentation as you type, and you can trigger completions at any time with ⌃Space (Windows, Linux Ctrl+Space). You can also hover over identifiers for more information about them.

Tip: Check out the IntelliCode extension for VS Code (preview). IntelliCode provides a set of AI-assisted capabilities for IntelliSense in Python, such as inferring the most relevant auto-completions based on the current code context.

Linting

Linting analyzes your Python code for potential errors, making it easy to navigate to and correct different problems.

The Python extension can apply a number of different linters including Pylint, pycodestyle, Flake8, mypy, pydocstyle, prospector, and pylama. See Linting.

Debugging

No more print statement debugging! Set breakpoints, inspect data, and use the debug console as you run your program step by step. Debug a number of different types of Python applications, including multi-threaded, web, and remote applications.

For Python-specific details, including setting up your launch.json configuration and remote debugging, see Debugging. General VS Code debugging information is found in the debugging document. The Django and Flask tutorials also demonstrate debugging in the context of those web apps, including debugging Django page templates.

Snippets

Snippets take productivity to the next level. You can configure your own snippets and use snippets provided by an extension. Snippets appear in the same way as code completion ⌃Space (Windows, Linux Ctrl+Space). For specific examples with Python, see the Django and Flask tutorials.

Environments

The Python extension automatically detects Python interpreters that are installed in standard locations. It also detects conda environments as well as virtual environments in the workspace folder. See Configuring Python environments. You can also use the python.pythonPath setting to point to an interpreter anywhere on your computer.

The current environment is shown on the left side of the VS Code Status Bar:

The Status Bar also indicates if no interpreter is selected:

The selected environment is used for IntelliSense, auto-completions, linting, formatting, and any other language-related feature other than debugging. It is also activated when you use run Python in a terminal.

To change the current interpreter, which includes switching to conda or virtual environments, select the interpreter name on the Status Bar or use the Python: Select Interpreter command.

VS Code prompts you with a list of detected environments as well as any you've added manually to your user settings (see Configuring Python environments).

Visual Studio Code Extensions

Installing packages

Packages are installed using the Terminal panel and commands like pip install <package_name> (Windows) and pip3 install <package_name> (macOS/Linux). VS Code installs that package into your project along with its dependencies. Examples are given in the Python tutorial as well as the Django and Flask tutorials.

Jupyter notebooks

If you open a Jupyter notebook file (.ipynb) in VS Code, you can use the Jupyter Notebook Editor to directly view, modify, and run code cells.

You can also convert and open the notebook as a Python code file. The notebook's cells are delimited in the Python file with #%% comments, and the Python extension shows Run Cell or Run All Cells CodeLens. Selecting either CodeLens starts the Jupyter server and runs the cell(s) in the Python interactive window:

Opening a notebook as a Python file allows you to use all of VS Code's debugging capabilities. You can then save the notebook file and open it again as a notebook in the Notebook Editor, Jupyter, or even upload it to a service like Azure Notebooks.

Using either method, Notebook Editor or a Python file, you can also connect to a remote Jupyter server for running the code. For more information, see Jupyter support.

Free visual studio code examples

Testing

The Python extension supports testing with the unittest, pytest, and nose test frameworks.

To run tests, you enable one of the frameworks in settings. Each framework also has specific settings, such as arguments that identify paths and patterns for test discovery.

Once discovered, VS Code provides a variety of commands (on the Status Bar, the Command Palette, and elsewhere) to run and debug tests, including the ability to run individual test files and individual methods.

Configuration

The Python extension provides a wide variety of settings for its various features. These are described on their relevant topics, such as Editing code, Linting, Debugging, and Testing. The complete list is found in the Settings reference.

Other popular Python extensions

The Microsoft Python extension provides all of the features described previously in this article. Additional Python language support can be added to VS Code by installing other popular Python extensions.

  1. Open the Extensions view (⇧⌘X (Windows, Linux Ctrl+Shift+X)).
  2. Filter the extension list by typing 'python'.

The extensions shown above are dynamically queried. Click on an extension tile above to read the description and reviews to decide which extension is best for you. See more in the Marketplace.

Next steps

  • Python Hello World tutorial - Get started with Python in VS Code.
  • Editing Python - Learn about auto-completion, formatting, and refactoring for Python.
  • Basic Editing - Learn about the powerful VS Code editor.
  • Code Navigation - Move quickly through your source code.
03/07/2019

In this topic, we'll teach you the fundamental concepts for building extensions. Make sure you have Node.js and Git installed, then install Yeoman and VS Code Extension Generator with:

The generator scaffolds a TypeScript or JavaScript project ready for development. Run the generator and fill out a few fields for a TypeScript project:

Then, inside the editor, press F5. This will compile and run the extension in a new Extension Development Host window.

Run the Hello World command from the Command Palette (⇧⌘P (Windows, Linux Ctrl+Shift+P)) in the new window:

You should see the Hello World from HelloWorld! notification showing up. Success!

Developing the extension

Let's make a change to the message:

  • Change the message from Hello World from HelloWorld! to Hello VS Code in extension.ts
  • Run Developer: Reload Window in the new window
  • Run the command Hello World again

You should see the updated message showing up.

Here are some ideas for you to try:

  • Give the Hello World command a new name in the Command Palette.
  • Contribute another command that displays current time in an information message. Contribution points are static declarations you make in the package.json Extension Manifest to extend VS Code, such as adding commands, menus, or keybindings to your extension.
  • Replace the vscode.window.showInformationMessage with another VS Code API call to show a warning message.

Debugging the extension

VS Code's built-in debugging functionality makes it easy to debug extensions. Set a breakpoint by clicking the gutter next to a line, and VS Code will hit the breakpoint. You can hover over variables in the editor or use the Run view in the left to check a variable's value. The Debug Console allows you to evaluate expressions.

You can learn more about debugging Node.js apps in VS Code in the Node.js Debugging Topic.

Next steps

In the next topic, Extension Anatomy, we'll take a closer look at the source code of the Hello World sample and explain key concepts.

You can find the source code of this tutorial at: https://github.com/microsoft/vscode-extension-samples/tree/master/helloworld-sample. The Extension Guides topic contains other samples, each illustrating a different VS Code API or Contribution Point.

Using JavaScript

In this guide, we mainly describe how to develop VS Code extension with TypeScript because we believe TypeScript offers the best experience for developing VS Code extensions. However, if you prefer JavaScript, you can still follow along using helloworld-minimal-sample.